Review—Engineering the Selectivity of the DNA-SWCNT Sensor

نویسندگان

  • Justyna Kupis-Rozmysłowicz
  • Alessandra Antonucci
  • Ardemis A. Boghossian
چکیده

Single-walled carbon nanotubes (SWCNTs) demonstrate a unique combination of optical, chemical, and physical properties that render them suitable for a variety of sensing applications. Their photostable near-infrared (nIR) fluorescence emissions are highly sensitive to perturbations in the surrounding SWCNT environment, enabling optical sensors with single-molecule detection limits. Despite these immanent advantages, SWCNTs lack the inherent molecular recognition capabilities required for selective sensing applications. One approach to tuning sensor selectivity is to engineer synthetic and biological wrappings that cover the nanotube’s surface in a manner that limits chemical access to the surface to specific target analytes. Among the numerous possible wrappings, deoxyribonucleic acid (DNA) has emerged as the most studied polymeric wrapping. In addition to the sequence-dependent tunability DNA offers in engineering selectivity, DNA assumes a peculiar helical wrapping conformation along the SWCNT surface that has been the focus of many experimental and computational studies. In this review, we summarize some of the major findings in the field, focusing on the underlying molecular interactions responsible for the conformational and molecular recognition elements of the wrapping. Special focus is given to characterizing the nucleotide binding affinity, DNA sequence dependency, DNA length variation, SWCNT chirality, and sugar backbone (RNA vs. DNA) contributions to the wrapping conformation and SWCNT fluorescence. This article concludes with an assessment of the latest DNA-SWCNT-based sensing platforms used for the selective, singleand multi-modal detection of target analytes. © 2016 The Electrochemical Society. [DOI: 10.1149/2.0111608jss] All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the Ibuprofen Chiral Forms Interactions with Single Wall Carbon Nanotube

The aim of this study is investigating the transport mechanism of ibuprofen chiral isomers inside single wall carbon nano tube (SWCNT) using mathematical modeling. To achieve this goal, molecular dynamics simulation has been performed to evaluate the interactions of ibuprofen isomers with SWCNT in an aqueous solution. Results show that both chiral forms of ibuprofen molecules enter and remain i...

متن کامل

Tuning Selectivity of Fluorescent Carbon Nanotube-Based Neurotransmitter Sensors

Detection of neurotransmitters is an analytical challenge and essential to understand neuronal networks in the brain and associated diseases. However, most methods do not provide sufficient spatial, temporal, or chemical resolution. Near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) have been used as building blocks for sensors/probes that detect catecholamine neurotransmit...

متن کامل

High Sensitive Gas Microsensors Based on Sulfonated Cnts and Cnts/polyaniline Mixture

A sensor is defined as a device which detects a variable quantity, usually a non-electric stimulus and converts it into electrical signals that are recorded. Measurement performances are defined by the sensitivity, selectivity, accuracy and stability characteristics of the sensor. Because of their high degree of selectivity and sensitivity, electrochemical sensors represent a very promising ana...

متن کامل

Highly Sensitive Amperometric Sensor Based on Gold Nanoparticles Polyaniline Electrochemically Reduced Graphene Oxide Nanocomposite for Detection of Nitric Oxide

A sensitive electrochemical sensor was fabricated for selective detection of nitric oxide (NO) based on electrochemically reduced graphene (ErGO)-polyaniline (PANI)-gold nanoparticles (AuNPs) nanocomposite. It was coated on a gold (Au) electrode through stepwise electrodeposition to form AuNPs-PANI-ErGO/Au electrode. The AuNPs-PANI-rGO nanocomposite was characterized by Field Emission Scanning ...

متن کامل

Routing Hole Handling Techniques for Wireless Sensor Networks: A Review

A Wireless Sensor Network consists of several tiny devices which have the capability to sense and compute the environmental phenomenon. These sensor nodes are deployed in remote areas without any physical protections. A Wireless Sensor Network can have various types of anomalies due to some random deployment of nodes, obstruction and physical destructions. These anomalies can diminish the sensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016